Evaluation of Stability of Amylose Inclusion Complexes Depending on Guest Polymers and Their Application to Supramolecular Polymeric Materials
نویسندگان
چکیده
This paper describes the evaluation of the stability of amylose-polymer inclusion complexes under solution state in dimethyl sulfoxide (DMSO) depending on guest polymers. The three complexes were prepared by the vine-twining polymerization method using polytetrahydrofuran (PTHF), poly(ε-caprolactone) (PCL), and poly(l-lactide) (PLLA) as guest polymers. The stability investigation was conducted at desired temperatures (25, 30, 40, 60 °C) in DMSO solutions of the complexes. Consequently, the amylose-PTHF inclusion complex was dissociated at 25 °C, while the other complexes were stable under the same conditions. When the temperatures were elevated, the amylose-PCL and amylose-PLLA complexes were dissociated at 40 and 60 °C, respectively. We also found that amylose inclusion supramolecular polymers which were prepared by the vine-twining polymerization using primer-guest conjugates formed films by the acetylation of amylose segments. The film from acetylated amylose-PLLA supramolecular polymer had higher storage modulus than that from acetylated amylose-PTHF supramolecular polymer, as a function of temperature.
منابع مشابه
Precision Synthesis of Functional Polysaccharide Materials by Phosphorylase-Catalyzed Enzymatic Reactions
In this review article, the precise synthesis of functional polysaccharide materials using phosphorylase-catalyzed enzymatic reactions is presented. This particular enzymatic approach has been identified as a powerful tool in preparing well-defined polysaccharide materials. Phosphorylase is an enzyme that has been employed in the synthesis of pure amylose with a precisely controlled structure. ...
متن کاملPreparation and Applications of Amylose Supramolecules by Means of Phosphorylase-Catalyzed Enzymatic Polymerization
This paper reviews preparation and applications of amylose supramolecules by means of phosphorylase-catalyzed enzymatic polymerization. When the enzymatic polymerization of α-D-glucose 1-phosphate (G-1-P) as a monomer was carried out in the presence of poly(tetrahydrofuran) (PTHF) of a hydrophobic polyether as a guest polymer, the supramolecule, i.e., an amylose-PTHF inclusion complex, was form...
متن کاملArchitecture of Amylose Supramolecules in Form of Inclusion Complexes by Phosphorylase-Catalyzed Enzymatic Polymerization
This paper reviews the architecture of amylose supramolecules in form of inclusion complexes with synthetic polymers by phosphorylase-catalyzed enzymatic polymerization. Amylose is known to be synthesized by enzymatic polymerization using α-d-glucose 1-phosphate as a monomer, by phosphorylase catalysis. When the phosphorylase-catalyzed enzymatic polymerization was conducted in the presence of v...
متن کاملElectrospinning of cyclodextrin-pseudopolyrotaxane nanofibers.
Cyclodextrins (CDs) are distinctive molecules that can form noncovalent host–guest complexes with a variety of molecules to yield intriguing supramolecular structures. Electrospinning has gained enormous attention since this versatile technique enables production of multifunctional nanofibers made from various polymers, polymer blends, composites, and ceramics. Electrospun nanofibers containing...
متن کاملSupramolecular polymers constructed by orthogonal self-assembly based on host-guest and metal-ligand interactions.
Supramolecular polymers constructed by orthogonal self-assembly based on host-guest and metal-ligand interactions are attracting increasing attention currently because of their interesting properties and potential applications. Host-guest interactions impart these polymers with good selectivity and convenient enviro-responsiveness, and metal-ligand interactions endow them with various coordinat...
متن کامل